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A B S T R A C T

Plastic waste (PW) has emerged as a global environmental concern due to its detrimental impact 
on ecosystems and human health. Traditional concrete heavily relies on natural aggregates like 
sand, gravel, and crushed stone, whose extraction leads to environmental degradation, including 
habitat destruction and resource depletion. Recently, the use of PW in concrete has gained 
attention as a sustainable alternative to these conventional aggregates. By incorporating PW as a 
partial replacement for natural aggregates, the construction industry can reduce its reliance on 
finite resources while also addressing the issue of PW. However, despite its potential environ-
mental benefits, the incorporation of PW into concrete has primarily been explored through 
experimental studies, which are often time-consuming and resource-intensive. Therefore, this 
study aims to optimize the utilization of waste plastic in concrete through machine learning (ML) 
techniques, specifically Multi-Expression Programming (MEP) and Gene Expression Programming 
(GEP). A comprehensive literature review was conducted to compile a database for evaluating the 
compressive strength (CS) and tensile strength (TS) of PW concrete. The most influential pa-
rameters, such as plastic (P), gravel (G), water (W), cement (C), sand (S), and age (A), were 
considered as inputs in the models’ development. The models developed were thoroughly eval-
uated using multiple statistical measures. Additionally, sensitivity analysis was conducted to 
discern and highlight influential factors that have a significant impact on the predicted outcomes. 
The findings indicate that both MEP (CS_R2 = 0.88, and TS_R2 = 0.89) and GEP (CS_R2 = 0.87, 
and TS_R2 = 0.88) models performed well, with MEP demonstrating slightly superior perfor-
mance. Sensitivity analysis highlights the significant influence of cement (25.63 % and 24.53 %) 
and plastic (22.4 % and 23.44 %) on concrete strength properties. Furthermore, the equations 
provided by GEP and MEP models are simple to use from a practical perspective. Overall, this 
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study contributes to sustainability efforts by promoting the incorporation of waste materials in 
concrete mixtures, thereby reducing reliance on cement.

1. Introduction

Plastic is considered one of the most important innovations of the 20th century. There has been a significant increase in plastic 
usage worldwide in recent years, leading to a comparable rise in the generation of plastic waste (PW). Plastic manufacturing in 2019 
reached a total of 460 million tons, which was double the quantity manufactured in 2000 [1]. Meanwhile, PW has become a significant 
environmental hazard in modern society. Plastic consists of various hazardous compounds, resulting in the pollution of land, air, and 
water. Due to its non-biodegradable nature, dumping plastic would result in the indefinite preservation of this toxic material. Plastics 
present a multitude of risks. They have the potential to obstruct the municipality’s water supply. The obstructed drains create ideal 
environments for disease-carrying insects and waterborne illnesses, in addition to producing floods [2,3]. When PW is combined with 
soil, it can decrease the pace at which rainwater is able to seep into the ground and also harm the fertility of the soil. Disposing of PW in 
waterways, lakes, and seas pollutes the water and harms marine organisms. Marine organisms have the ability to ingest plastic debris, 
which can have detrimental effects on their well-being. Certain marine organisms have been discovered to possess plastic fragments in 
their digestive systems and plastic compounds in their muscular tissues [4].

Considering the detrimental environmental effects caused by PW, it is imperative to prioritize plastic recycling to achieve sus-
tainable development [5]. Likewise, supplementary cementitious materials are of great importance for reducing CO2 emissions from 
cement consumption [6–8]. Cement manufacturing is responsible for approximately 7 % of worldwide carbon emissions, which raises 
the issue of climate change [9–11]. If current emission rates persist without intervention, it’s projected that the cement industry will 
release 2.34 billion tonnes of greenhouse gases by 2050 [12]. Moreover, the process of extracting gravel during mining has a negative 
impact on the availability of groundwater [13–15]. A significant portion of unoccupied land was depleted during the extraction of sand 
from the riverbed. According to Shiuly et al. [16], the amount of land wasted as a result of natural aggregates has risen from 14 % to 
112.9 % between 2013 and 2017. Further, the use of aggregates contributes to 13–20 % of the overall CO2 emissions produced during 
the production of concrete.

Prior discussions have highlighted the pressing need to recycle PW in a sustainable manner and explore substitute materials for 
cement in the manufacturing of concrete [17–19]. In recent times, scientists have achieved significant advancements by utilizing PW as 
a feasible substitute for traditional cement and aggregates in concrete mixtures. For example, Schaefer et al. [20] studied the use of PW 
treated with gamma radiation as a replacement for cement. They found that integrating 100 kilograys of IPW with substituting 1.25 % 
of the weight of binder resulted in a 1 % improvement in CS. He et al. [21] assessed the utilization of PW as a replacement for cement in 

Fig. 1. Benefits of PW in concrete.
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mortars. They discovered that this substitution increased the initial strength of the mortar, improved the process of cement hydration, 
and decreased both electrical flux and permeability. Lee et al. [22] demonstrated that substituting sand with irradiated plastic waste 
(IPW) up to 5 % leads to a 23 % enhancement in CS. In addition, Marzouk et al. [23] used PET PW as aggregates in concrete and 
discovered that replacing up to 50 % of the particles produced similar outcomes as traditional concrete. However, over this limit 
resulted in notable decreases in mechanical characteristics. In a similar manner, Rahmani et al. [24] noticed a 9 % enhancement in CS 
by substituting 5 % of the fine aggregate with PW. Several other studies demonstrated the economic and ecological benefits of PW in 
concrete, including cost reduction, decreased energy and water usage, reduced greenhouse gas emissions, and preservation of natural 
resources.

For example, Javadabadi [25] conducted a comprehensive analysis to evaluate the environmental consequences of using recycled 
plastic as a fine aggregate in the manufacturing of concrete, from its initial creation to its final use. The study found that using 
recycled-based aggregates resulted in considerable reductions in environmental consequences, including global warming potential and 
human toxicity. Similarly, researchers such as Ersan et al. [26] investigated the environmental impacts of incorporating fly ash and 
recycled PW into concrete. They used a cradle-to-grave approach using SimPro software to assess the environmental implications of 
1 m3 of concrete across its entire life cycle. The results demonstrated a significant reduction of 13 % in carbon emissions when 
compared to traditional approaches. In addition, PW contributes to the circular economy in several ways. Firstly, since it’s regarded as 
waste and lacks inherent value, incorporating it into construction materials enhances its utility and promotes recycling. Secondly, 
utilizing plastic waste reduces transportation costs associated with sourcing traditional building materials, as it is readily available. 
Lastly, incorporating plastic waste into construction materials reduces the energy consumption involved in cement manufacturing, 
thus promoting sustainability and resource efficiency [27].

According to the studies mentioned above, incorporating PW into concrete presents a sustainable alternative for concrete in-
gredients while preserving the desirable characteristics. The use of PW in concrete offers numerous benefits, as illustrated in Fig. 1. Due 
to plastic being a recent addition to concrete as a raw material, evaluating its mechanical qualities and establishing the appropriate mix 
ratio necessitates conducting numerous experimental tests. Moreover, conducting traditional experiments may be time-consuming and 
expensive. Consequently, scholars are currently dedicated to creating machine learning (ML) algorithms to assess the characteristics 
and enhance the composition of concrete [28–30]. Creating a robust predictive methodology would lead to the development of more 
efficient combinations that meet design requirements and improve the practical utilization of concrete mixtures.

In recent years, ML techniques such as Artificial Neural Networks (ANN) [31], Deep Learning (DL), Adaptive Neuro-Fuzzy Inference 
Systems (ANFIS), Partical Swarm Optimization (PSO), Random Forest (RF) [32], Support Vector Machines (SVM) [33], Decision Tree 
(DT), Extreme Gradient Boosting (XGB) and Multilayer Perceptron Neural Networks (MLPNN) have gained popularity as viable al-
ternatives to traditional experimental testing within the realm of structural materials engineering [34–36]. These advanced 

Fig. 2. Scientometric analysis of ML applications in concrete.
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computational methods offer efficient and accurate solutions for predicting material properties and behaviour, thereby revolutionizing 
the field [37]. For instance, Dai et al. [38] utilized nine ML methods to estimate concrete electrical flux data associated with chloride 
ion permeability. Ensembled nonlinear models demonstrate superior accuracy compared to linear models. The article proposes an 
economical method of improving the mixture of concrete by utilizing machine learning techniques. Huang et al. [39] employed an 
innovative ML model that integrates XGB, RF, and SVM techniques. The model was developed specifically to precisely predict the bond 
strength of degraded reinforced concrete. The algorithm used outperforms empirical equations in terms of predictability, as demon-
strated by the RF method’s excellent accuracy (R2 = 0.963), which was determined through the examination of 166 sets of data 
collected from experiments. The findings highlight the potential of ML models in accurately estimating the binding strength of con-
crete. Feng et al. [40] utilized the adaptive boosting method to estimate the CS of concrete. Their study employed a dataset consisting 
of 1030 samples. The comparative investigation demonstrated that boosting achieved superior performance compared to ANN and 
SVM in predicting CS. Karim et al. [41] investigated the incorporation of fly ash (FA) and rice husk ash (RHA) as an additive to the 
manufacturing process of sustainable concrete. The study examined these variables’ combined effects on concrete properties and 
successfully predicted the CS using ML approaches (ANN, XGB, and GBM). The results showed that optimal strength was achieved with 
a higher percentage of fly ash and a lower percentage of rice husk ash. Similar results were also demonstrated by ML models, which, in 
XGB, had an exceptional precision of 0.84. Peng et al. [42] used standard and hybrid algorithms along with interpretable models. They 
found that hybrid ML models performed better as compared to simple ML models. They also identified that cement content, water 
content, natural fine aggregates, and water absorption were the main factors influencing the mechanical properties of concrete.

Furthermore, Fig. 2 illustrates a Scientometric study that shows the importance of ML applications in predicting the characteristics 
of concrete. Previous research has shown that ML algorithms can effectively support the adoption of novel and environmentally 
friendly materials in the production of concrete. Notably, only a few investigations have been undertaken on the utilization of PW in 
concrete through the application of ML models. For example, Nafees et al. [43] employed ML techniques such as DT, SVM, RF, and MLP 
and ensemble methods to estimate the CS and TS of PW concrete. The findings showed that an RF model using a modified learning 
approach demonstrated robust and reliable efficiency, achieving a high R2 value of 0.94 and 0.87 for CS and TS, respectively. In 
addition, the sensitivity assessments highlighted key elements that have a significant impact on the mechanical properties, high-
lighting the potential of ML in advancing environmentally friendly building methods. Asif et al. [44] conducted a similar study using 
ML models to evaluate the CS and FS of concrete containing PW. They also found satisfactory results. Likewise, Han et al. [45] utilized 
an ML model, namely Random Forest (RF), to forecast concrete properties, such as CS and dry density, by integrating plastic aggre-
gates. They observed that the RF model demonstrated high accuracy in predictions with low mean absolute percentage errors. 
Additionally, they highlighted the significance of plastic aggregate content in influencing concrete properties.

Although traditional ML methods have shown exceptional performance in different fields, they frequently fail to present simple 
prediction equations, instead operating as complicated systems that hide their internal mechanisms [46,47]. Moreover, these methods 
sometimes need substantial memory resources, which can impose constraints on their implementation [48]. In recent years, evolu-
tionary algorithms such as genetic programming (GP) have emerged as a promising alternative to traditional methods [49,50]. GP 
offers a simple prediction equation, enhancing understanding of fundamental processes. GP also reduces the risk of overfitting, which 
is common in conventional ML models [51]. Moreover, advanced variants like multi-expression programming (MEP) demonstrate 
even greater potential. MEP not only provides prediction equations but also boasts improved memory capacity, offering enhanced 
adaptability and efficiency compared to conventional ML techniques [52].

Therefore, considering the above drawbacks of conventional ML and the benefits of evolutionary algorithms, this study employs the 
GEP and MEP-based models for the first time to evaluate the CS and TS of PW concrete. Initially, comprehensive data was collected for 
model development, followed by hyperparameter tuning to select the best settings for the models. Subsequently, the efficacy of the 
models was evaluated using various statistical metrics. Then, the most effective models from the GEP and MEP were utilized to develop 
mathematical predictive equations for CS and TS of PW concrete. Sensitivity analysis was also conducted to understand how different 
factors influenced the prediction models. Finally, GUI was developed using MATLAB v2024, which provides quick estimation tools for 
the pre-mix design of PW concrete mixtures, providing efficient alternatives to the traditional, time-consuming experimental ap-
proaches. This study considerably contributes to the eco-friendly utilization of PW and the reduction of cement usage in concrete. 
Additionally, it contributes to the economy by utilizing waste materials effectively.

Table 1 
Statistics summary of CS dataset.

Inputs Mean SD Maximum Mode Range Kurtosis Minimum Skewness

Plastic 111.69 141.57 637.00 0.00 637.00 1.93 0.00 1.53
Sand 634.22 156.72 957.00 789.14 877.00 1.51 80.00 − 0.85
Age 20.75 10.15 28.00 28.00 25.00 − 1.50 3.00 − 0.70
Water 189.48 27.40 241.50 197.00 141.50 0.75 100.00 − 0.53
Cement 394.97 67.31 550.00 367.34 450.00 4.38 100.00 − 0.84
Gravel 996.08 355.02 1867.00 865.00 1767.00 0.75 100.00 0.23
CS. 29.20 11.54 66.89 27.00 64.20 0.68 2.69 0.70
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2. Methods and materials

2.1. Data collection

In this study, a comprehensive database comprising 324 data records for CS and 261 data records for TS of concrete made with PW 
was systematically curated from relevant literature sources [53–67]. Through an extensive literature review, only data records with 
complete information essential for the analysis of CS and TS were considered. In the developed database, standard-size cylindrical 
specimens (150 mm×300 mm) were consistently used for both CS and TS measurements to ensure uniformity and comparability of 
results. The selected input variables include plastic (P), gravel (G), water (W), cement (C), sand (S), and age (A). Statistical summaries, 
including minimum, maximum, skewness, kurtosis, and range, were calculated and presented in Table 1 and Table 2. Notably, var-
iables such as C lie in a range of 100 and 550, and 295 and 550 kg/m3, G has a range of 100 and 1867, and 147 and 1246 kg/m3 in CS 
and TS databases, respectively. P showed values in the range of 637 kg/m3 in both cases, while S has a range of 80 and 957, and 85.40 
and 909 kg/m3 in CS and TS. These higher values indicate the spread of the data in a wider range. Kurtosis and Skewness values that 
fall inside the limit of ± 3 and ± 10 are generally considered acceptable [68]. Table 1 and Table 2 indicate that these values are within 
the acceptable limits. Further, considering the importance of data distribution in ML analysis, frequency distribution plots (depicted in 
Fig. 3 and Fig. 4 for CS and TS, respectively) were employed. It can be observed that the inputs show the random distribution of data 
across the entire range. This visualization highlights the generalization of the databases.

Additionally, the presence of multicollinearity can adversely impact model performance [69,70]. To assess this issue, correlation 
metrics were developed to quantify the degree of correlation between input variables, thereby enhancing the accuracy and reliability 
of the predictive models. Fig. 5 and Fig. 6 display the multi-correlation matrices of the input variables and outputs utilized in this 
investigation. Different colors represent distinct correlations. The analysis reveals that the inputs with the strongest connection are 
age, water, and cement. Likewise, coarse and fine aggregates have weaker connections. These findings align with other prior in-
vestigations, as it is widely recognized that water and cement are the main factors influencing both the initial qualities and long-term 
attributes (such as CS and TS) of concrete [71,72]. Furthermore, there is a significant correlation between all contents and the outputs, 
indicating that all inputs are contributing to the efficacy of the CS and TS.

2.2. Gene-expression programming (GEP)

GEP, initially developed by Ferreira, is an evolutionary algorithm designed to evolve computer programs for solving complex 
problems [73,74]. The GEP approach involves the following steps:

1. Initial Population: GEP begins with a randomly generated population of chromosomes. These chromosomes represent computer 
programs as sequences of symbols encoding mathematical expressions or algorithms.

2. Fitness Evaluation: The performance of each chromosome is assessed by calculating its fitness, which measures how accurately it 
solves the problem at hand. For instance, in this study, fitness is determined by how well the chromosome predicts the CS and TS of 
concrete incorporating PW.

3. Selection: Chromosomes with higher fitness values (i.e., those with minimal prediction error) are selected to reproduce. These 
selected chromosomes are considered the most "fit" individuals in the population.

4. Genetic Operations: Genetic operators such as mutation (random changes in the chromosome’s structure) and crossover (the 
exchange of segments between chromosomes) are applied to the selected chromosomes. These operations create new offspring with 
the potential to perform better than their parents.

5. Evolution: The process of fitness evaluation, selection, and genetic operations is repeated over several generations, allowing the 
population to evolve toward better solutions.

6. Final Output: After multiple generations, GEP produces mathematical expressions directly from the trained models’ data. These 
expressions provide accurate predictions for the material properties being studied. The schematic representation of the GEP process 
is shown in Fig. 7.

2.3. Multi-expression programming (MEP)

MEP is an advanced evolutionary algorithm that extends traditional genetic programming principles, including those used in GEP 

Table 2 
Statistics summary of TS dataset.

Inputs Mean SD Maximum Mode Range Kurtosis Minimum Skewness

Plastic 105.75 146.97 637.00 0.00 637.00 2.09 0.00 1.61
Sand 677.54 130.80 909.00 789.14 823.60 1.60 85.40 − 0.69
Age 22.05 9.48 28.00 28.00 21.00 − 1.07 7.00 − 0.97
Water 194.53 33.50 260.00 197.00 135.32 − 0.22 124.68 − 0.18
Cement 405.83 68.32 550.00 367.34 255.00 − 0.71 295.00 0.32
Gravel 867.12 220.26 1246.00 865.00 1099.00 0.88 147.00 − 0.65
TS. 2.85 0.97 5.56 3.10 5.11 − 0.14 0.45 0.39
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F =

[
− 1.A + 0.66C + 0.348S
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(13) 
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(14) 
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A.S2 − G
]

(15) 

On the other hand, in MEP, the MEPx tool was used to develop empirical predictive equations for CS and TS, as shown in Eqs. 16 
and 17. The basic hyperparameters and arithmetic functions used for formulation were explained in Fig. 10. 
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3.2. Regression analysis of GEP and MEP models

Fig. 11 (a and b) presents scatter plots illustrating the comparison between the GEP model-predicted and observed values of CS and 
TS for both training and testing datasets. A criterion for model efficiency suggests that both the R2 and gradient values should surpass 
0.8 [82]. Notably, GEP demonstrates superior efficiency, with slope of 0.91 and 0.86 in CS and 0.87 and 0.85 in TS for the training 
(learning) and testing datasets, respectively, indicating a robust correspondence between anticipated and actual values of CS and TS. 
Correspondingly, R2 values of 0.87 and 0.86 in CS and 0.88 and 0.87 in TS were noted during the training and testing (evaluation) 
phases, reflecting an almost exact fit for the datasets and indicative of well-fitted models.

Moreover, a thorough investigation of error analysis provides valuable insights into the functioning of the GEP model, as depicted 
in Fig. 12 (a-d). It can be noted that 77 % and 87 % of the error instances lie below 5 and 0.5 MPa in the case of CS and TS models, 
correspondingly. The consistently low variation seen at each level of the GEP model study indicates strong overall performance, 
confirming its effectiveness in forecasting CS and TS.

Similarly, the scatter plots in Fig. 13 (a and b) depict the comparison between the predicted values of CS and TS by the MEP model 

Fig. 11. Scatter plots for GEP projected and observed values for (a) CS and (b) TS models.
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3.3. Comparative analysis of GEP and MEP models

The coherence of an ML algorithm is closely linked to the quantity of data used in its development. Based on established research 
criteria, the number of data points should exceed three times the number of independent variables [83]. In this investigation, the ratio 
for both CS and TS is significantly beyond the established threshold, with values of 54 (324/6) and 44 (261/6) correspondingly. As 
mentioned before, there is a substantial association between parameters in both CS and TS models based on GEP and MEP. It is 
important to mention that although R2 can successfully identify linear relationships between inputs and outputs, it may not be enough 
to fully evaluate the proposed models. Therefore, in this study, additional statistical criteria were used to evaluate the strength and 
dependability of both models.

Fig. 15 (a and b) shows a comparison between the predicted and observed values produced by the GEP and MEP models for CS and 
TS. It can be seen that both models show comparable trends in their projected and actual values. The MEP-based machine learning 
models exhibit slightly higher accuracy in predicting CS and TS for PW concrete compared to the GEP, as demonstrated by the sta-
tistical assessments illustrated in Fig. 16 (a-d). More precisely, MEP models demonstrate a reduction of 3.22 % and 4.71 % in MAE and 
RMSE values, respectively, as compared to GEP models in CS models. Similarly, the MEP models exhibit a reduction of 3.12 % and 
4.21 % in MAE and RMSE values, respectively, as compared to GEP models in TS models. Furthermore, the highest errors shown in 
MEP-based models are slightly lower than those seen in GEP models. For all instances, the PI values are below 0.2, signifying that the 
created model satisfies the essential conditions for approval.

Ultimately, both the MEP and GEP models demonstrate exceptional predictive capabilities, with MEP displaying a little higher 
accuracy. The MEP equation is also easy to implement due to its simplicity and user-friendly nature, making it a helpful tool for quick 
estimations. This research aims to simplify the evaluation of sustainable concrete mixtures that incorporate plastic waste, hence 
promoting the adoption of green construction methods.

3.4. Sensitivity analysis

In ML models, it is important to understand the influence of various features on the model’s predictions. In this study, sensitivity 
analysis was performed to examine the relative importance of each variable in determining the CS and TS of PW concrete using the 
equations presented below. 

Yi = Pmax(mi) − Qmin(mi) (18) 

Fig. 16. GEP and MEP comparative analysis based on statistical metrics.
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SA(%) =
Yi

∑j=1
n Yj

× 100 (19) 

Here, Y signifies the potential range of outcomes of the model that are connected with a particular input variable while keeping all 
other inputs unchanged. The acceptable range of values for SA spans from 0 % to 100 %. A figure approaching 100 % implies a major 
impact, whereas a value near 0 implies limited influence. It is important to mention that age was kept constant throughout the analysis 
as it has an obvious impact on the outputs.

Fig. 17 (a and b) clearly shows that cement (25.63 % and 24.53 %) and plastic (22.4 % and 23.44 %) have the greatest sensitivity 
in both scenarios, indicating their significant influence on the model’s outputs. The contributions of water (18.7 and 19.75), sand 
(16.45 % and 17.33 %), and gravel (17.55 % and 15.87 %) to CS and TS are nearly equal, as indicated by the sensitivity values 
measured. These results align with prior studies, emphasizing the concurrence between the conclusions of this research and the 
existing body of literature.

3.5. Comparison of proposed models with literature

In this section, the results of this study are compared with existing literature. Recently, several studies have been conducted to 
examine the properties of concrete utilizing ML models. Table 3 provides an overview of prior studies conducted to evaluate the 
properties of concrete containing PW. It is evident that the developed models yield comparable results to those reported in the 
literature, as indicated by the R2 and RMSE values. Minor differences may arise due to factors such as hyperparameters and data split in 
the various phases of training and testing of the models. In conclusion, it can be inferred that the proposed models can be confidently 
employed to estimate the CS and TS of PW concrete.

3.6. Graphical user interface (GUI)

It is essential to provide a GUI to enhance the practical implementation of predictive models for plastic concrete. In this study, 
MATLAB was used to develop a GUI, as shown in Fig. 18. The GUI was designed using the optimized best predictive model (MEP) 
estimations, ensuring accurate and reliable outputs. The interface consists of input panels where users need to enter values in kg/m3. 
By clicking on the "Predict" button, users can obtain outputs such as compressive strength (CS) and tensile strength (TS). This GUI offers 
several advantages, including user-friendly interaction, quick predictions without requiring advanced programming knowledge, and 
efficient handling of data inputs and outputs, making it accessible for both researchers and practitioners.

4. Conclusion

Waste plastic poses significant hazards to the environment due to its non-biodegradable nature, requiring sustainable solutions for 
its management. Additionally, the use of SCMs in concrete has gained significant importance due to the greenhouse emissions of 
cement in the environment. Recently, various researchers investigated the integration of PW in concrete as a sustainable and cost- 
efficient alternative to cement and recycling waste plastic. However, most prior studies focused on traditional experimental pro-
cedures to optimize the integration of PW in concrete, which can be labor-intensive and time-consuming. Alternatively, ML-based 
models offer a promising solution by using the literature data to optimize and assess concrete properties. This study introduces 
robust predictive equations based on GEP and MEP to evaluate the CS and TS of concrete containing PW. For the development of the 
models, a comprehensive database comprising 276 data points for CS and 235 data records for TS of concrete made with PW was 
systematically curated from relevant literature sources. The models were evaluated and compared using various statistical parameters. 
The key findings of this study can be seen below:

1. Statistical evaluations revealed that MEP outperforms the GEP model, demonstrating higher accuracy with favourable slope values 
and R2 values in both training and testing datasets.

2. The MEP models exhibit lower RMSE and MAE values compared to the GEP model, indicating superior predictive capabilities. More 
precisely, MEP models demonstrate a reduction of 3.22 % and 4.71 % in MAE and RMSE values, respectively, as compared to GEP 
models in CS models. Similarly, the MEP models exhibit a reduction of 3.1 % and 4.2 % in MAE and RMSE values, respectively, as 
compared to GEP models in TS models.

3. Error analysis demonstrates that the majority of anticipated values from the GEP and MEP model fall within acceptable error 
thresholds for CS and TS, further validating its reliability.

4. Both the MEP and GEP models demonstrate exceptional predictive capabilities, with MEP displaying a slightly higher accuracy. The 
MEP equation is also easy to implement due to its simplicity and user-friendly nature, making it a helpful tool for quick estimations.

5. Sensitivity analysis highlights the significant influence of variables such as cement and plastic content on the model’s predictions, 
emphasizing their importance in accurately estimating CS and TS.

In conclusion, the GEP and MEP models can be used as reliable tools to optimize the use of PW in concrete while providing reliable 
predictive equations. These equations are simple to use and require only the input of various parameters associated with PW concrete. 
Consequently, the CS and TS of the concrete can be accurately predicted and utilized for pre-design purposes. Additionally, these 
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predictive models not only aid in efficient design purposes but also contribute to the reduction and elimination of PW. However, it’s 
important to acknowledge the limitations of this study. The range of data used in the database is restricted, which may limit the 
generalizability of the findings. To address this limitation, future research could focus on expanding the database with additional 
inputs and outputs. Furthermore, conducting SHAP (Shapley Additive Explanations) analysis could provide deeper insights into the 
contribution of input variables to model predictions. Additionally, while the current study focused on short-term performance, the 
impact of PW on the long-term durability and mechanical properties of concrete remains underexplored. Future research could benefit 
from long-term durability studies and assessments of environmental aging on plastic-infused concrete.

5. Challenges in the commercial use of PW in concrete

The commercial implementation of PW in concrete faces several challenges, including economic feasibility, scalability, and reg-
ulatory approval. While PW-infused concrete can reduce material costs, the collection, processing, and integration of PW into existing 
production systems require investment. Ensuring consistent quality, addressing the melting behavior of plastics at high temperatures, 
and modifying mixing processes are necessary for large-scale production. Regulatory hurdles, particularly concerning waste man-
agement and building codes, must be navigated, and environmental concerns, such as microplastic leaching, need thorough investi-
gation. Market acceptance will depend on successful demonstrations of PW-infused concrete in real-world applications, particularly in 

Fig. 17. Outcomes of sensitivity analysis (a) CS and (b) TS models.

Table 3 
Comparison of developed models with literature.

ML model R2 RMSE Output parameter References

MEP 0.88 4.04 CS This study
0.89 0.3 TS 

GEP 0.87 4.15 CS 
0.88 0.34 FS 

SVM 0.75 6.9 CS [84]
0.73 0.58 TS 

MLPNN 0.78 6.5 CS 
0.74 0.59 TS 

DT 0.78 6.68 CS 
0.77 0.54 TS 

ANN (optimized) 0.9 0.73 CS [85]
0.91 0.3 FS 
0.9 0.55 TS 
0.89 0.513 Slump 

GEP 0.92 3.88 CS [86]
0.88 0.82 TS 
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non-structural or light-traffic uses. Future work should focus on expanding the database, assessing environmental impacts, and 
collaborating with industrial partners to scale up production and validate the material’s performance on a larger scale.
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